Cluster-Based Bounded Influence Regression

نویسندگان

  • David E. Lawrence
  • Jeffrey B. Birch
  • Yajuan Chen
چکیده

A regression methodology is introduced that obtains competitive, robust, efficient, high breakdown regression parameter estimates as well as providing an informative summary regarding possible multiple outlier structure. The proposed method blends a cluster analysis phase with a controlled bounded influence regression phase, thereby referred to as cluster-based bounded influence regression, or CBI. Representing the data space via a special set of anchor points, a collection of point-addition OLS regression estimators forms the basis of a metric used in defining the similarity between any two observations. Cluster analysis then yields a main cluster “half-set” of observations, with the remaining observations comprising one or more minor clusters. An initial regression estimator arises from the main cluster, with a group-additive DFFITS argument used to carefully activate the minor clusters through a bounded influence regression frame work. CBI achieves a 50% breakdown point, is regression equivariant, scale and affine equivariant and distributionally is asymptotically normal. Case studies and Monte Carlo results demonstrate the performance advantage of CBI over other popular robust regression procedures regarding coefficient stability, scale estimation and standard errors. The dendrogram of the clustering process and the weight plot are graphical displays available for multivariate outlier detection. Overall, the proposed methodology represents advancement in the field of robust regression, offering a distinct philosophical view point towards data analysis and the marriage of estimation with diagnostic summary.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Redescending M-estimators in Regression Analysis, Cluster Analysis and Image Analysis

We give a review on the properties and applications of M-estimators with redescending score function. For regression analysis, some of these redescending M-estimators can attain the maximum breakdown point which is possible in this setup. Moreover, some of them are the solutions of the problem of maximizing the efficiency under bounded influence function when the regression coefficient and the ...

متن کامل

Bouligand Derivatives and Robustness of Support Vector Machines for Regression

We investigate robustness properties for a broad class of support vector machines with non-smooth loss functions. These kernel methods are inspired by convex risk minimization in infinite dimensional Hilbert spaces. Leading examples are the support vector machine based on the ε-insensitive loss function, and kernel based quantile regression based on the pinball loss function. Firstly, we propos...

متن کامل

Robustness properties of a robust PLS regression method

The presence of multicollinearity in regression data is no exception in real life examples. Instead of applying ordinary regression methods, biased regression techniques such as Principal Component Regression and Ridge Regression have been developed to cope with such data sets. In this paper we consider Partial Least Squares (PLS) regression by means of the SIMPLS algorithm. Because the SIMPLS ...

متن کامل

Conditionally Unbiased Bounded Influence Estimation in General Regression

Iu this paper we study robust estimation in general models for the dependence of a response y on an explanatory vector z. We extend previous work on bounded influence estimators in linear regression. Second we construct optimal bounded influence estimators for generalized linear models. We consider the class of estimators defined by an estimating equation with a conditionally unbiased score flw...

متن کامل

Opinion formation with time-varying bounded confidence

When individuals in social groups communicate with one another and are under the influence of neighbors' opinions, they typically revise their own opinions to adapt to such peer opinions. The individual threshold of bounded confidence will thus be affected by both a change in individual confidence and by neighbor influence. Individuals thus update their own opinions with new bounded confidence,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Quality and Reliability Eng. Int.

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2014